2D


33

541.49
.. , ..
2
2D , . , - , , . , . , d 0,5/^
: , , , .
, (). , . , . .
, [1]. , , . , .. , . .
, . , , -, . [2] , , :
- ; - . 3 . 1. , , , . [3] , , d~1/y , .

= (-^),
(1)
. 1. h.
[^ = 0,14 . (1)
= 0,11 -1
, . , , , ( ), .
[4; 5], , [6]. , .
, , , . - [7], , . . [8-10]. , - . ) , - , .
^ + |^(/) - (1 ) | = -1 + fd' \(,,',')1(','^ ^', (2)
z \ 2 * -
1
/ , (,') =(9,) '=(9','). , , .
(2) , . / . , . [9] :
= , (3)
4/0
- ,/0 - . - D (3)
= 31-/0. (4)
2 / D

= Ry, (5)
- , . =1 [8]. , (2)-(5) , , (4) , .
, ' , . / ' (2)-(5) , [8]. ( ) ,
'= 1 - ^. (6)
1 + 2/1 -
(6), ' , . ' , , .
, , , , , . , , , 2D / (4), (6).

, , , . (., , [11]). , ,

2 1
V2 - - ---------= grad , (7)
2

- , , - . , , (7)
2
V2 - ^- = 0. (8)
t2
, ,
.
, (7)
V2 - 5^- = 0. (9)
t2 t
, , (9).
(, t) = [-^] [-/(^ - )], (10)
3 - ( 3 = 0).
, , , , . (10) (9) , :
= exp[-i at ], (11)

- (10), . (11) (9),
V2 + 2 = 0, (12)
. - , (=2/) (, ). , (9) (12) , .
(12) , -, , , . , . .
J :
= 2 , = , (13)
- , - .
[11]. . -. SS -, , . - . (7) (13) - . (7) (13) /
0,1 , .
, , . Rl R. R. , /2 .
/ . :
= [] + 2 [- + )], (14)
1,2 - . (14) , , , . 2 = [1 . . (), , :
(15)
5
, (14),
,1 21~-1
----+ =--------=-----. (16)
1 + ^-
/ . , (16)
2-1
- + 1 =---1=: . (17)
1 + ^ -1
:
- +1 = 21, (18)
(=0):
- +1 = 0 (19)
R=1 ( ):
V = 0. (20)
, , (12) (17)-(20), , , . , , , . 0,4%.

2D 1,065 , , , [3]. Fe-10%Ni, . 2. , . 28% . [12].
. R' , 28%.
. 2. Fe-10%Ni
Comsol MultiPhysics 3.5, . (12) Comsol. . 3. , , , , . 3050 . . 0,1 . 106 .
. 3. : - ; -

: 01 (18) ; 0.2 (20), ; 0.2 (19). - (17), R . R . [3] 1,065 , , 0,7. [11]. [8].
Fe-Ni . 4 5. . 4 . , . , . 4, . 5 .
I = Re(U )2 + 1( )2, I ~ 2. . 5 .
1() . 5 3 =0,17 -1. 3 0,13 -1. , , , . =0,11 -1 [3], , 2 .
. 4. 2D : ( ); ( )
,
. 5. .
, 1
/,
. 6. d 28%.
, d =0,5^ (. . 6). (4), . 28% 0,58/^ 3 .
d
. 7. d

, , , . , , . (6) ' , [9]. . , d , 4 (. . 7). . 7
R, , . 12 , R' R ( ). , , 4 (. . 7). , , . , R' .

, , . 2D , . , , . , . , , (y=0,5/d), . , . , , , , [9]. , . , . , ( ), .
07.08 » , 2.947.2011.

1. .., .., .., .. // . 2010. . 20. 21 .
2. .., .. // . . -. . . . 2011. . 1. . 13-23.
3. .., .., .. // . 2012. . 113, 1. . 1-6.
4. Diermendjian D. Electromagnetic scattering on spherical polydispersions. New York: Elsevier, 1969.
5. . . .: , 1971. 303 .
6. Baillis D., Sacadura J.F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization // J. Quant Spectrosc & Radiat. Transfer. 2000. Vol. 67. P. 327.
7. Consalvi J.L., Porterie B., Loraud J.C. A formal averaging procedure for radiation heat transfer in particulate media // J. Heat Mass Transfer. 2002. Vol. 45. P. 2755.
.
8. Gusarov A.V., Smurov I. Radiation transfer in metallic powder beds used in laser processing // Journal of Quantitative Spectroscopy & Radiative Transfer. 2010. Vol. 111. P. 2517-2527.
9. Gusarov A.V. Homogenization of radiation transfer in two-phase media with irregular phase boundaries // Phys. Rev. B. 2008. Vol. 77. P. 144-201.
10. .. // .2010. . 40, 5. . 451-459.
11. .., .., . . ( ). . 1: / . . .. . : , 2002. 141 .
12. .., .. Fe-Ni // . 2011. . 111, 1. . 54-63.
13.06.12
E. V. Kharanzhevskiy, S.N. Kostenkov
2D modelling of laser radiation transfer in metal dispersed powder media
The results of 2D numerical calculations of the radiation energy transfer in porous powder media, laser-irradiated normal to the surface. A computer model based on solving Maxwell's equations for heterogeneous media vacuum -metal, takes into account the phenomenon of wave optics, both at the passage of radiation through a dispersion medium, and at its reflection from the surface of metal particles. It is shown that the intensity distribution of laser radiation on the powder layer depth is exponential and corresponds to the Bouguer law. The nature of the absorption is determined by the morphology and dispersion of the particles, and, for monodisperse powders, and the constant is determined by the absorption of spherical particles of diameter d as 0.5 / d.
Keywords: laser sintering, radiation transport, powder, mathematical model.
,
, ,
» 426034, , . , . , 1 (. 1) E-mail: eh@udsu.ru
Kostenkov S. N., associate professor
Kharanzhevskiy E.V.,
candidate of technics, associate professor
Udmurt State University
426034, Russia, Izhevsk, Universitetskaya st., 1/1 E-mail: eh@udsu.ru