-

^! 1 .
2008. . 3
532.5:519.63
. .
-
- .
', ^, .

. , , , . . 90- . (), - [1, 5]. / .
. - . [2] , , ( -) .
- ( ) .
1. -
(. . 1). - . , , . , .
- :
)

^ ^ ^
) X
(2) () 1 / 2 2\ \2 2) '

2008. . 3


\ \ \ \
/
/
. 1.
)
() {2) 1
1
2 2 2 2
(1.3)


,


= + , V = + V, = + ,
(1.4)
(1.5)
(1.6)
, V , , . - [1, 5]. (1.4)(1.6) -, : ) -
" _ ^

{)2 ^{) () {) () 1
(1.7)
(1.8)
2 2\ + ^ +
? 1
V 2 ' 2
(") () (") ()2 () 1
(1.9)

1 /2 \ 2
" 2
+






'
+ ",
= _
" = -1 -




2 () 1 / 2 2
\2 2
() 2 1 / 2 2
\2 2
(1.10) (1.11) (1.12)
. 2. Vi V2
(1.10)(1.12) . , , : " 0, 0 " 0.
. (1.1)
VI = {(, ) | 0 < * < 1; 0 < < 1 }, 2 = {(,) | 0 < < 1; 0 < * < 1 },
. 2,
u(x,y) dy = 0,
v(x, y) dx = 0.
(1.13)
(1.14)
(1.13) (1.14) -. ( ) , - [2].
(1.13) (1.14) - :
1
ca(x, y) dy = J u(x, y) dy, 0
1
c* (x'y) dx =i v(x-y) dx-
(1.15)
(1.16)

cp(t,x,y) = cpX (t, x) + cpy (t, y) + cpxy (t, x, y)
(1.15) (1.16) : ) X (1.8) (1.15)
' ()2 2<() d(ucv) d(vcu) d(cucv)
dt
dx

dcf dx

dcf1 dx
dx +
dy
1 (c)2ca d2c
+
dy
Re \ dx2 dy2
dy
+ Ra
f ca(x, y) dy = f u(x, y) dy, 00
(1.17)
(1.18)
1
a
1
1

2008. . 3

"- /
\ 1 f ' / t
\


. 3.
) Y (1.9) (1.16)
d(vcu
1
f dcv d(ucv
dt
dx
+
dx
u^ d(cuc
d(cv )2 d(vcv
dcp" dy
dcp 1 dy
+
Re V dx2
dx dy
d2cv c)2c°
+ ) +RV
dy2
dy
(1.19)
f cv(x, y) dx = J v(x, y) dx, 0 0
, (cPxy )'x (cPxy )'y ( cpXV, ), , .
(1.17) (1.8) (1.9) :
) - X
{)2 .{) (") d{vcu) d{cucv) dt dx dx dy dy dy
(1.20)

dcpX dx
dcp

1
dx Re
d2cu d2cu
+
dx2 dy
+ Ru
) - no Y
dcv (") d(vca) {) {)2 d{vcv dt dx dx dx dy dy
(1.21)
dcpX dy
dcpXl dy
1
d2cv d2cv +
dx2 dy2
+ Rv.
, - / .
2.
. 3. - (1.18) (1.19). . cpX cpV. , .
2
2008. .
X
. 4.
. 5. = 1000
( ) . (1.7), (1.20) (1.21) . [3]. , . , . .
. 4 = 1000. - -
1001 1001.
. 5.
2008. .

- . - . , , , . ( ~ 30... 50 % ) [2]. . - - .
, [1]. .
- , . .

1. . . // . 2000. . 1. - 1. - . 85-104.
2. . . - // . . . 2008. JYS2. . 78-94.
3. Chorin A. J. A numerical method for solving incompressible viscous flow problems //J. Comput. Phys. 1967. - Vol. 2. - P. 12-26.
4. Ghia U., Ghia K. N., Shin C.T. High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method //J. Comp. Physics. 1982. Vol. 48. P. 387-411.
5. Martynenko S. I. Robust Multigrid Technique for black box software // Comp. Meth. in Appl. Math. 2006. - Vol. 6, . - P. 413-435.
16.10.08
S. I. Martynenko
Adaptation of NavierStokes equations to the robust multigrid technique
We study an adaptation of the Navier-Stokes equations to the robust multigrid technique in order to develop efficient solver for CFD problems.
Keywords: Navier-Stokes equations, multigrid methods.
Mathematical Subject Classifications: 65N55, 76Mxx
, . .-.., . . . , 111116, , . , . , 2, E-mail: martyn_s@mail.ru